Convergence analysis of the Peaceman-Rachford splitting method for nonsmooth convex optimization

نویسندگان

  • Deren Han
  • Xiaoming Yuan
چکیده

In this paper, we focus on the convergence analysis for the application of the PeacemanRachford splitting method to a convex minimization model whose objective function is the sum of a smooth and nonsmooth convex functions. The sublinear convergence rate in term of the worst-case O(1/t) iteration complexity is established if the gradient of the smooth objective function is assumed to be Lipschitz continuous; and the linear convergence rate is derived if this smooth function is further assumed to be strongly convex. A key technique to obtain these convergence rate results is that we use the primal-dual gap, rather than the objective function value to measure the accuracy of iterates. We also propose a modified Peaceman-Rachford splitting method for this convex minimization model which does not require to know the involved Lipschitz constant. Convergence analysis is conducted for this modified Peaceman-Rachford splitting method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture 20 : Splitting Algorithms

In this lecture, we discuss splitting algorithms for convex minimization problems with objective given by the sum of two nonsmooth functions. We start with the fixed point property of such problems and derive a general scheme of splitting algorithm based on fixed point iteration. This covers Douglas-Rachford splitting and Peaceman-Rachford splitting algorithms. We also discuss the convergence r...

متن کامل

Faster Convergence Rates of Relaxed Peaceman-Rachford and ADMM Under Regularity Assumptions

Splitting schemes are a class of powerful algorithms that solve complicated monotone inclusion and convex optimization problems that are built from many simpler pieces. They give rise to algorithms in which the simple pieces of the decomposition are processed individually. This leads to easily implementable and highly parallelizable algorithms, which often obtain nearly state-of-the-art perform...

متن کامل

Alternating linearization for structured regularization problems

OF THE DISSERTATION Alternating linearization for structured regularization problems by Minh Pham Dissertation Director: Andrzej Ruszczyński Xiaodong Lin We adapt the alternating linearization method for proximal decomposition to structured regularization problems. The method is related to two well-known operator splitting methods, the Douglas-Rachford and the Peaceman-Rachford method, but it h...

متن کامل

A Strictly Contractive Peaceman-Rachford Splitting Method for Convex Programming

In this paper, we focus on the application of the Peaceman-Rachford splitting method (PRSM) to a convex minimization model with linear constraints and a separable objective function. Compared to the Douglas-Rachford splitting method (DRSM), another splitting method from which the alternating direction method of multipliers originates, PRSM requires more restrictive assumptions to ensure its con...

متن کامل

Peaceman-Rachford splitting for a class of nonconvex optimization problems

We study the applicability of the Peaceman-Rachford (PR) splitting method for solving nonconvex optimization problems. When applied to minimizing the sum of a strongly convex Lipschitz differentiable function and a proper closed function, we show that if the strongly convex function has a large enough strong convexity modulus and the step-size parameter is chosen below a threshold that is compu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013